Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 383(6683): eadj1415, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38330136

RESUMO

Lung adenocarcinoma (LUAD) and small cell lung cancer (SCLC) are thought to originate from different epithelial cell types in the lung. Intriguingly, LUAD can histologically transform into SCLC after treatment with targeted therapies. In this study, we designed models to follow the conversion of LUAD to SCLC and found that the barrier to histological transformation converges on tolerance to Myc, which we implicate as a lineage-specific driver of the pulmonary neuroendocrine cell. Histological transformations are frequently accompanied by activation of the Akt pathway. Manipulating this pathway permitted tolerance to Myc as an oncogenic driver, producing rare, stem-like cells that transcriptionally resemble the pulmonary basal lineage. These findings suggest that histological transformation may require the plasticity inherent to the basal stem cell, enabling tolerance to previously incompatible oncogenic driver programs.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Proteínas Proto-Oncogênicas c-akt , Proteínas Proto-Oncogênicas c-myc , Carcinoma de Pequenas Células do Pulmão , Humanos , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Adenocarcinoma de Pulmão/terapia , Células Epiteliais/patologia , Pulmão/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/terapia , Carcinoma de Pequenas Células do Pulmão/genética , Carcinoma de Pequenas Células do Pulmão/patologia , Carcinoma de Pequenas Células do Pulmão/terapia , Oncogenes , Linhagem da Célula , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-akt/genética , Terapia de Alvo Molecular
2.
bioRxiv ; 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37904985

RESUMO

The tumor suppressor LKB1 is a serine/threonine protein kinase that is frequently mutated in human lung adenocarcinoma (LUAD). LKB1 regulates a complex signaling network that is known to control cell polarity and metabolism; however, the pathways that mediate the tumor suppressive activity of LKB1 are incompletely defined. To identify mechanisms of LKB1- mediated growth suppression we developed a spheroid-based cell culture assay to study LKB1- dependent growth. Using this assay, along with genome-wide CRISPR screens and validation with orthogonal methods, we discovered that LKB1 suppresses growth, in part, by activating the PIKFYVE lipid kinase, which promotes the internalization of wild-type EGFR. Our findings reveal a new mechanism of regulation of EGFR, which may have implications for the treatment of LKB1 -mutant LUAD.

3.
bioRxiv ; 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37873210

RESUMO

We recently described our initial efforts to develop a model for small cell lung cancer (SCLC) derived from human embryonic stem cells (hESCs) that were differentiated to form pulmonary neuroendocrine cells (PNECs), a putative cell of origin for neuroendocrine-positive SCLC. Although reduced expression of the tumor suppressor genes TP53 and RB1 allowed the induced PNECs to form subcutaneous growths in immune-deficient mice, the tumors did not display the aggressive characteristics of SCLC seen in human patients. Here we report that the additional, doxycycline-regulated expression of a transgene encoding wild-type or mutant cMYC protein promotes rapid growth, invasion, and metastasis of these hESC-derived cells after injection into the renal capsule. Similar to others, we find that the addition of cMYC encourages the formation of the SCLC-N subtype, marked by high levels of NEUROD1 RNA. Using paired primary and metastatic samples for RNA sequencing, we observe that the subtype of SCLC does not change upon metastatic spread and that production of NEUROD1 is maintained. We also describe histological features of these malignant, SCLC-like tumors derived from hESCs and discuss potential uses of this model in efforts to control and better understand this recalcitrant neoplasm.

4.
Nat Biotechnol ; 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37563300

RESUMO

Although single-nucleotide variants (SNVs) make up the majority of cancer-associated genetic changes and have been comprehensively catalogued, little is known about their impact on tumor initiation and progression. To enable the functional interrogation of cancer-associated SNVs, we developed a mouse system for temporal and regulatable in vivo base editing. The inducible base editing (iBE) mouse carries a single expression-optimized cytosine base editor transgene under the control of a tetracycline response element and enables robust, doxycycline-dependent expression across a broad range of tissues in vivo. Combined with plasmid-based or synthetic guide RNAs, iBE drives efficient engineering of individual or multiple SNVs in intestinal, lung and pancreatic organoids. Temporal regulation of base editor activity allows controlled sequential genome editing ex vivo and in vivo, and delivery of sgRNAs directly to target tissues facilitates generation of in situ preclinical cancer models.

5.
Cancer Discov ; 13(4): 1002-1025, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36715544

RESUMO

KRAS is the most frequently mutated oncogene in human lung adenocarcinomas (hLUAD), and activating mutations frequently co-occur with loss-of-function mutations in TP53 or STK11/LKB1. However, mutation of all three genes is rarely observed in hLUAD, even though engineered comutation is highly aggressive in mouse lung adenocarcinoma (mLUAD). Here, we provide a mechanistic explanation for this difference by uncovering an evolutionary divergence in the regulation of triosephosphate isomerase (TPI1). In hLUAD, TPI1 activity is regulated via phosphorylation at Ser21 by the salt inducible kinases (SIK) in an LKB1-dependent manner, modulating flux between the completion of glycolysis and production of glycerol lipids. In mice, Ser21 of TPI1 is a Cys residue that can be oxidized to alter TPI1 activity without a need for SIKs or LKB1. Our findings suggest this metabolic flexibility is critical in rapidly growing cells with KRAS and TP53 mutations, explaining why the loss of LKB1 creates a liability in these tumors. SIGNIFICANCE: Utilizing phosphoproteomics and metabolomics in genetically engineered human cell lines and genetically engineered mouse models (GEMM), we uncover an evolutionary divergence in metabolic regulation within a clinically relevant genotype of human LUAD with therapeutic implications. Our data provide a cautionary example of the limits of GEMMs as tools to study human diseases such as cancers. This article is highlighted in the In This Issue feature, p. 799.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Triose-Fosfato Isomerase , Animais , Humanos , Camundongos , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Mutação , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Triose-Fosfato Isomerase/genética , Triose-Fosfato Isomerase/metabolismo
6.
Cancer Res ; 82(22): 4261-4273, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36112789

RESUMO

Mutationally activated BRAF is detected in approximately 7% of human lung adenocarcinomas, with BRAFT1799A serving as a predictive biomarker for treatment of patients with FDA-approved inhibitors of BRAFV600E oncoprotein signaling. In genetically engineered mouse (GEM) models, expression of BRAFV600E in the lung epithelium initiates growth of benign lung tumors that, without additional genetic alterations, rarely progress to malignant lung adenocarcinoma. To identify genes that cooperate with BRAFV600E for malignant progression, we used Sleeping Beauty-mediated transposon mutagenesis, which dramatically accelerated the emergence of lethal lung cancers. Among the genes identified was Rbms3, which encodes an RNA-binding protein previously implicated as a putative tumor suppressor. Silencing of RBMS3 via CRISPR/Cas9 gene editing promoted growth of BRAFV600E lung organoids and promoted development of malignant lung cancers with a distinct micropapillary architecture in BRAFV600E and EGFRL858R GEM models. BRAFV600E/RBMS3Null lung tumors displayed elevated expression of Ctnnb1, Ccnd1, Axin2, Lgr5, and c-Myc mRNAs, suggesting that RBMS3 silencing elevates signaling through the WNT/ß-catenin signaling axis. Although RBMS3 silencing rendered BRAFV600E-driven lung tumors resistant to the effects of dabrafenib plus trametinib, the tumors were sensitive to inhibition of porcupine, an acyltransferase of WNT ligands necessary for their secretion. Analysis of The Cancer Genome Atlas patient samples revealed that chromosome 3p24, which encompasses RBMS3, is frequently lost in non-small cell lung cancer and correlates with poor prognosis. Collectively, these data reveal the role of RBMS3 as a lung cancer suppressor and suggest that RBMS3 silencing may contribute to malignant NSCLC progression. SIGNIFICANCE: Loss of RBMS3 cooperates with BRAFV600E to induce lung tumorigenesis, providing a deeper understanding of the molecular mechanisms underlying mutant BRAF-driven lung cancer and potential strategies to more effectively target this disease.


Assuntos
Adenocarcinoma de Pulmão , Carcinogênese , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Proteínas Proto-Oncogênicas B-raf , Proteínas de Ligação a RNA , Transativadores , Animais , Humanos , Camundongos , Adenocarcinoma de Pulmão/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Proliferação de Células , Pulmão/patologia , Neoplasias Pulmonares/genética , Mutagênese , Proteínas Proto-Oncogênicas B-raf/metabolismo , Proteínas de Ligação a RNA/genética , Transativadores/metabolismo , Via de Sinalização Wnt , Carcinogênese/genética
7.
J Thorac Oncol ; 15(9): 1522-1534, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32599072

RESUMO

OBJECTIVES: SCLC represents 15% of all lung cancer diagnoses in the United States and has a particularly poor prognosis. We hypothesized that kinases regulating SCLC survival pathways represent therapeutically targetable vulnerabilities whose inhibition may improve SCLC outcome. METHODS: A short-hairpin RNA (shRNA) library targeting all human kinases was introduced in seven chemonaive patient-derived xenografts (PDX) and the cells were cultured in vitro and in vivo. On harvest, lost or depleted shRNAs were considered as regulating-cell survival pathways and deemed essential kinases. RESULTS: Unsupervised hierarchical cluster analysis of recovered shRNAs separated the PDXs into two clusters, suggesting kinase-based heterogeneity among the SCLC PDXs. A total of 23 kinases were identified as essential in two or more PDXs, with mechanistic Target of Rapamycin (mTOR) a candidate essential kinase in four. mTOR phosphorylation status correlated with PDX sensitivity to mTOR kinase inhibition, and mTOR inhibition sensitized the PDX to cisplatin and etoposide. In the PDX in which mTOR was defined as essential, mTOR inhibition caused a 43% decrease in tumor volume at 21 days (p < 0.01). Combining mTOR inhibition with cisplatin and etoposide decreased PDX tumor volume 96% compared with cisplatin and etoposide alone at 70 days (p < 0.002). Chemoresistance did not develop with the combination of mTOR inhibition and cisplatin and etoposide in mTOR-essential PDX over 105 days. The prevalence of phospho-mTOR-Ser-2448 in a tissue microarray of chemonaive SCLC was 27%, thus, identifying an important SCLC subtype that might benefit from the addition of mTOR inhibition to standard chemotherapy. CONCLUSIONS: These studies reveal that kinases can define SCLC subgroups, can identify therapeutic vulnerabilities, and can potentially be used to optimize therapeutic approaches. Significance We used functional genomics to identify kinases regulating SCLC survival. mTOR was identified as essential in a subset of PDXs. mTOR inhibition decreased PDX growth, sensitized PDX to cisplatin and etoposide, and prevented chemoresistance.


Assuntos
Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Cisplatino/farmacologia , Etoposídeo/farmacologia , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Sirolimo , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Carcinoma de Pequenas Células do Pulmão/genética , Serina-Treonina Quinases TOR , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Photochem Photobiol ; 95(3): 787-802, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30582615

RESUMO

The chlorophyll-derivative chlorin e6 (Ce6) identified in the retinas of deep-sea ocean fish is proposed to play a functional role in red bioluminescence detection. Fluorescence and 1 H NMR spectroscopy studies with the bovine dim-light photoreceptor, rhodopsin, indicate that Ce6 weakly binds to it with µm affinity. Absorbance spectra prove that red light sensitivity enhancement is not brought about by a shift in the absorbance maximum of rhodopsin. 19 F NMR experiments with samples where 19 F labels are either placed at the cytoplasmic binding site or incorporated as fluorinated retinal indicate that the cytoplasmic domain is highly perturbed by binding, while little to no changes are detected near the retinal. Binding of Ce6 also inhibits G-protein activation. Chemical shift changes in 1 H-15 N NMR spectroscopy of 15 N-Trp labeled bovine rhodopsin reveal that Ce6 binding perturbs the entire structure. These results provide experimental evidence that Ce6 is an allosteric modulator of rhodopsin.


Assuntos
Porfirinas/metabolismo , Rodopsina/metabolismo , Regulação Alostérica , Sequência de Aminoácidos , Animais , Bovinos , Clorofilídeos , Luz , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Conformação Proteica , Retina/metabolismo , Rodopsina/química , Espectrometria de Fluorescência
9.
J Clin Invest ; 127(8): 2957-2967, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28650343

RESUMO

Seneca Valley virus (SVV) is an oncolytic picornavirus with selective tropism for neuroendocrine cancers. It has shown promise as a cancer therapeutic in preclinical studies and early-phase clinical trials. Here, we have identified anthrax toxin receptor 1 (ANTXR1) as the receptor for SVV using genome-wide loss-of-function screens. ANTXR1 is necessary for permissivity in vitro and in vivo. However, robust SVV replication requires an additional innate immune defect. We found that SVV interacts directly and specifically with ANTXR1, that this interaction is required for SVV binding to permissive cells, and that ANTXR1 expression is necessary and sufficient for infection in cell lines with decreased expression of antiviral IFN genes at baseline. Finally, we identified the region of the SVV capsid that is responsible for receptor recognition using cryoelectron microscopy of the SVV-ANTXR1-Fc complex. These studies identify ANTXR1, a class of receptor that is shared by a mammalian virus and a bacterial toxin, as the cellular receptor for SVV.


Assuntos
Proteínas do Capsídeo/química , Proteínas de Neoplasias/química , Picornaviridae , Receptores de Superfície Celular/química , Receptores Virais/química , Animais , Linhagem Celular Tumoral , Sobrevivência Celular , Microscopia Crioeletrônica , Feminino , Perfilação da Expressão Gênica , Genoma , Proteínas de Fluorescência Verde/química , Humanos , Camundongos , Camundongos Nus , Proteínas dos Microfilamentos , Terapia Viral Oncolítica , Vírus Oncolíticos
10.
Cancer Res ; 77(14): 3931-3941, 2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28487384

RESUMO

The Notch ligand DLL3 has emerged as a novel therapeutic target expressed in small cell lung cancer (SCLC) and high-grade neuroendocrine carcinomas. Rovalpituzumab teserine (Rova-T; SC16LD6.5) is a first-in-class DLL3-targeted antibody-drug conjugate with encouraging initial safety and efficacy profiles in SCLC in the clinic. Here we demonstrate that tumor expression of DLL3, although orders of magnitude lower in surface protein expression than typical oncology targets of immunoPET, can serve as an imaging biomarker for SCLC. We developed 89Zr-labeled SC16 antibody as a companion diagnostic agent to facilitate selection of patients for treatment with Rova-T based on a noninvasive interrogation of the in vivo status of DLL3 expression using PET imaging. Despite low cell-surface abundance of DLL3, immunoPET imaging with 89Zr-labeled SC16 antibody enabled delineation of subcutaneous and orthotopic SCLC tumor xenografts as well as distant organ metastases with high sensitivity. Uptake of the radiotracer in tumors was concordant with levels of DLL3 expression and, most notably, DLL3 immunoPET yielded rank-order correlation for response to SC16LD6.5 therapy in SCLC patient-derived xenograft models. Cancer Res; 77(14); 3931-41. ©2017 AACR.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/biossíntese , Neoplasias Pulmonares/metabolismo , Proteínas de Membrana/biossíntese , Carcinoma de Pequenas Células do Pulmão/metabolismo , Células A549 , Animais , Linhagem Celular Tumoral , Feminino , Xenoenxertos , Humanos , Imunoconjugados , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Camundongos , Camundongos Nus , Metástase Neoplásica , Tomografia por Emissão de Pósitrons , Carcinoma de Pequenas Células do Pulmão/diagnóstico por imagem , Carcinoma de Pequenas Células do Pulmão/genética , Carcinoma de Pequenas Células do Pulmão/patologia
12.
Cancer Cell ; 31(2): 286-299, 2017 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-28196596

RESUMO

Small cell lung cancer is initially highly responsive to cisplatin and etoposide but in almost every case becomes rapidly chemoresistant, leading to death within 1 year. We modeled acquired chemoresistance in vivo using a series of patient-derived xenografts to generate paired chemosensitive and chemoresistant cancers. Multiple chemoresistant models demonstrated suppression of SLFN11, a factor implicated in DNA-damage repair deficiency. In vivo silencing of SLFN11 was associated with marked deposition of H3K27me3, a histone modification placed by EZH2, within the gene body of SLFN11, inducing local chromatin condensation and gene silencing. Inclusion of an EZH2 inhibitor with standard cytotoxic therapies prevented emergence of acquired resistance and augmented chemotherapeutic efficacy in both chemosensitive and chemoresistant models of small cell lung cancer.


Assuntos
Proteína Potenciadora do Homólogo 2 de Zeste/fisiologia , Neoplasias Pulmonares/tratamento farmacológico , Proteínas Nucleares/fisiologia , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Animais , Resistencia a Medicamentos Antineoplásicos , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Humanos , Camundongos , Proteínas Nucleares/análise , Proteínas Nucleares/genética , Proteína 1 Relacionada a Twist/fisiologia
13.
Clin Cancer Res ; 23(2): 523-535, 2017 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-27440269

RESUMO

PURPOSE: PARP inhibitors (PARPi) are a novel class of small molecule therapeutics for small cell lung cancer (SCLC). Identification of predictors of response would advance our understanding, and guide clinical application, of this therapeutic strategy. EXPERIMENTAL DESIGN: Efficacy of PARP inhibitors olaparib, rucaparib, and veliparib, as well as etoposide and cisplatin in SCLC cell lines, and gene expression correlates, was analyzed using public datasets. HRD genomic scar scores were calculated from Affymetrix SNP 6.0 arrays. In vitro talazoparib efficacy was measured by cell viability assays. For functional studies, CRISPR/Cas9 and shRNA were used for genomic editing and transcript knockdown, respectively. Protein levels were assessed by immunoblotting and immunohistochemistry (IHC). Quantitative synergy of talazoparib and temozolomide was determined in vitro In vivo efficacy of talazoparib, temozolomide, and the combination was assessed in patient-derived xenograft (PDX) models. RESULTS: We identified SLFN11, but not HRD genomic scars, as a consistent correlate of response to all three PARPi assessed, with loss of SLFN11 conferring resistance to PARPi. We confirmed these findings in vivo across multiple PDX and defined IHC staining for SLFN11 as a predictor of talazoparib response. As temozolomide has activity in SCLC, we investigated combination therapy with talazoparib and found marked synergy in vitro and efficacy in vivo, which did not solely depend on SLFN11 or MGMT status. CONCLUSIONS: SLFN11 is a relevant predictive biomarker of sensitivity to PARP inhibitor monotherapy in SCLC and we identify combinatorial therapy with TMZ as a particularly promising therapeutic strategy that warrants further clinical investigation. Clin Cancer Res; 23(2); 523-35. ©2016 AACR.


Assuntos
Sinergismo Farmacológico , Proteínas Nucleares/genética , Poli(ADP-Ribose) Polimerase-1/genética , Inibidores de Poli(ADP-Ribose) Polimerases/administração & dosagem , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Benzimidazóis/administração & dosagem , Linhagem Celular Tumoral , Cisplatino/administração & dosagem , Dacarbazina/administração & dosagem , Dacarbazina/análogos & derivados , Etoposídeo/administração & dosagem , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Genômica/métodos , Humanos , Indóis/administração & dosagem , Camundongos , Ftalazinas/administração & dosagem , Piperazinas/administração & dosagem , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Carcinoma de Pequenas Células do Pulmão/genética , Carcinoma de Pequenas Células do Pulmão/patologia , Temozolomida , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Cell Rep ; 17(9): 2445-2459, 2016 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-27840052

RESUMO

Extensive transcriptional and ontogenetic diversity exists among normal tissue-resident macrophages, with unique transcriptional profiles endowing the cells with tissue-specific functions. However, it is unknown whether the origins of different macrophage populations affect their roles in malignancy. Given potential artifacts associated with irradiation-based lineage tracing, it remains unclear if bone-marrow-derived macrophages (BMDMs) are present in tumors of the brain, a tissue with no homeostatic involvement of BMDMs. Here, we employed multiple models of murine brain malignancy and genetic lineage tracing to demonstrate that BMDMs are abundant in primary and metastatic brain tumors. Our data indicate that distinct transcriptional networks in brain-resident microglia and recruited BMDMs are associated with tumor-mediated education yet are also influenced by chromatin landscapes established before tumor initiation. Furthermore, we demonstrate that microglia specifically repress Itga4 (CD49D), enabling its utility as a discriminatory marker between microglia and BMDMs in primary and metastatic disease in mouse and human.


Assuntos
Neoplasias Encefálicas/patologia , Macrófagos/patologia , Animais , Sequência de Bases , Células da Medula Óssea/patologia , Neoplasias Encefálicas/genética , Linhagem da Célula , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Glioma/genética , Glioma/patologia , Humanos , Integrina alfa4/metabolismo , Ativação de Macrófagos , Macrófagos/metabolismo , Camundongos , Microglia/metabolismo , Microglia/patologia , Análise de Sequência de RNA , Fatores de Transcrição/metabolismo
15.
PLoS One ; 11(9): e0160587, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27611664

RESUMO

Patient-derived xenograft (PDX) mouse models are increasingly used for preclinical therapeutic testing of human cancer. A limitation in molecular and genetic characterization of PDX tumors is the presence of integral murine stroma. This is particularly problematic for genomic sequencing of PDX models. Rapid and dependable approaches for quantitating stromal content and purifying the malignant human component of these tumors are needed. We used a recently developed technique exploiting species-specific polymerase chain reaction (PCR) amplicon length (ssPAL) differences to define the fractional composition of murine and human DNA, which was proportional to the fractional composition of cells in a series of lung cancer PDX lines. We compared four methods of human cancer cell isolation: fluorescence-activated cell sorting (FACS), an immunomagnetic mouse cell depletion (MCD) approach, and two distinct EpCAM-based immunomagnetic positive selection methods. We further analyzed DNA extracted from the resulting enriched human cancer cells by targeted sequencing using a clinically validated multi-gene panel. Stromal content varied widely among tumors of similar histology, but appeared stable over multiple serial tumor passages of an individual model. FACS and MCD were superior to either positive selection approach, especially in cases of high stromal content, and consistently allowed high quality human-specific genomic profiling. ssPAL is a dependable approach to quantitation of murine stromal content, and MCD is a simple, efficient, and high yield approach to human cancer cell isolation for genomic analysis of PDX tumors.


Assuntos
Genômica , Neoplasias/genética , Neoplasias/patologia , Células Estromais/metabolismo , Animais , Biologia Computacional/métodos , Modelos Animais de Doenças , Genômica/métodos , Xenoenxertos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Camundongos , Células Estromais/patologia
16.
Sci Transl Med ; 8(345): 345ra87, 2016 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-27358497

RESUMO

Disseminated tumors are poorly accessible to nanoscale drug delivery systems because of the vascular barrier, which attenuates extravasation at the tumor site. We investigated P-selectin, a molecule expressed on activated vasculature that facilitates metastasis by arresting tumor cells at the endothelium, for its potential to target metastases by arresting nanomedicines at the tumor endothelium. We found that P-selectin is expressed on cancer cells in many human tumors. To develop a targeted drug delivery platform, we used a fucosylated polysaccharide with nanomolar affinity to P-selectin. The nanoparticles targeted the tumor microenvironment to localize chemotherapeutics and a targeted MEK (mitogen-activated protein kinase kinase) inhibitor at tumor sites in both primary and metastatic models, resulting in superior antitumor efficacy. In tumors devoid of P-selectin, we found that ionizing radiation guided the nanoparticles to the disease site by inducing P-selectin expression. Radiation concomitantly produced an abscopal-like phenomenon wherein P-selectin appeared in unirradiated tumor vasculature, suggesting a potential strategy to target disparate drug classes to almost any tumor.


Assuntos
Nanopartículas/química , Selectina-P/metabolismo , Animais , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Sistemas de Liberação de Medicamentos , Feminino , Humanos , Imuno-Histoquímica , Técnicas In Vitro , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/secundário , Melanoma/complicações , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Melanoma/radioterapia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Polissacarídeos/química , Polissacarídeos/uso terapêutico , Radiação Ionizante , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/efeitos da radiação , Microambiente Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
17.
J Clin Invest ; 126(7): 2610-20, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27294525

RESUMO

Small-cell lung cancer (SCLC) is a highly aggressive subtype of lung cancer with limited treatment options. CD47 is a cell-surface molecule that promotes immune evasion by engaging signal-regulatory protein alpha (SIRPα), which serves as an inhibitory receptor on macrophages. Here, we found that CD47 is highly expressed on the surface of human SCLC cells; therefore, we investigated CD47-blocking immunotherapies as a potential approach for SCLC treatment. Disruption of the interaction of CD47 with SIRPα using anti-CD47 antibodies induced macrophage-mediated phagocytosis of human SCLC patient cells in culture. In a murine model, administration of CD47-blocking antibodies or targeted inactivation of the Cd47 gene markedly inhibited SCLC tumor growth. Furthermore, using comprehensive antibody arrays, we identified several possible therapeutic targets on the surface of SCLC cells. Antibodies to these targets, including CD56/neural cell adhesion molecule (NCAM), promoted phagocytosis in human SCLC cell lines that was enhanced when combined with CD47-blocking therapies. In light of recent clinical trials for CD47-blocking therapies in cancer treatment, these findings identify disruption of the CD47/SIRPα axis as a potential immunotherapeutic strategy for SCLC. This approach could enable personalized immunotherapeutic regimens in patients with SCLC and other cancers.


Assuntos
Antígeno CD47/metabolismo , Imunoterapia/métodos , Neoplasias Pulmonares/terapia , Macrófagos/imunologia , Carcinoma de Pequenas Células do Pulmão/terapia , Animais , Anticorpos Monoclonais/farmacologia , Antígeno CD56/metabolismo , Linhagem Celular Tumoral , Citocinas/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Humanos , Neoplasias Pulmonares/imunologia , Camundongos , Fagocitose , Receptores Imunológicos/metabolismo , Transdução de Sinais , Carcinoma de Pequenas Células do Pulmão/imunologia
19.
Cancer Res ; 74(10): 2846-56, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24614082

RESUMO

Overexpression of the antiapoptotic protein Bcl-2 is observed in the majority of small cell lung cancer (SCLC) cases and is associated with resistance to chemotherapy. While targeting Bcl-2 in hematologic malignancies continues to show signs of promise, translating the BH3 mimetic ABT-737 (or ABT-263; navitoclax) to the clinic for solid tumors has remained problematic, with limited single-agent activity in early-phase clinical trials. Here, we used patient-derived xenograft (PDX) models of SCLC to study ABT-737 resistance and demonstrated that responses to ABT-737 are short lived and coincide with decreases in HIF-1α-regulated transcripts. Combining the mTOR inhibitor rapamycin with ABT-737 rescued this resistance mechanism, was highly synergistic in vitro, and provided durable tumor regressions in vivo without notable hematologic suppression. In comparison, tumor regressions did not occur when ABT-737 was combined with etoposide, a gold-standard cytotoxic for SCLC therapy. Rapamycin exposure was consistently associated with an increase in the proapoptotic protein BAX, whereas ABT-737 caused dose-dependent decreases in BAX. As ABT-737 triggers programmed cell death in a BAX/BAK-dependent manner, we provide preclinical evidence that the efficacy of ABT-737 as a single agent is self-limiting in SCLC, but the addition of rapamycin can maintain or increase levels of BAX protein and markedly enhance the anticancer efficacy of ABT-737. These data have direct translational implications for SCLC clinical trials.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Compostos de Bifenilo/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Nitrofenóis/farmacologia , Sirolimo/farmacologia , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Sulfonamidas/farmacologia , Animais , Compostos de Bifenilo/administração & dosagem , Linhagem Celular Tumoral , Sinergismo Farmacológico , Etoposídeo/administração & dosagem , Etoposídeo/farmacologia , Feminino , Humanos , Neoplasias Pulmonares/metabolismo , Camundongos , Camundongos SCID , Nitrofenóis/administração & dosagem , Piperazinas/administração & dosagem , Piperazinas/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/biossíntese , Distribuição Aleatória , Sirolimo/administração & dosagem , Carcinoma de Pequenas Células do Pulmão/metabolismo , Sulfonamidas/administração & dosagem , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Mol Cancer ; 12: 16, 2013 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-23452820

RESUMO

BACKGROUND: New therapies are urgently needed for patients with small cell lung cancer (SCLC). Chemotherapy and targeted therapies, including the Bcl-2 inhibitor ABT-737, may induce tumor cell autophagy. Autophagy can promote survival of cancer cells under stress and comprise a pathway of escape from cytotoxic therapies. METHODS: We explored the combination of ABT-737 and chloroquine, an inhibitor of autophagy, in preclinical models of SCLC. These included cell culture analyses of viability and of autophagic and apoptotic pathway induction, as well as in vivo analyses of efficacy in multiple xenograft models. RESULTS: Combination treatment of SCLC lines with ABT-737 and chloroquine decreased viability and increased caspase-3 activation over treatment with either single agent. ABT-737 induced several hallmarks of autophagy. However, knockdown of beclin-1, a key regulator of entry into autophagy, diminished the efficacy of ABT-737, suggesting either that the effects of chloroquine were nonspecific or that induction but not completion of autophagy is necessary for the combined effect of ABT-737 and chloroquine. ABT-737 and chloroquine in SCLC cell lines downregulated Mcl-1 and upregulated NOXA, both of which may promote apoptosis. Treatment of tumor-bearing mice demonstrated that chloroquine could enhance ABT-737-mediated tumor growth inhibition against NCI-H209 xenografts, but did not alter ABT-737 response in three primary patient-derived xenograft models. CONCLUSION: These data suggest that although ABT-737 can induce autophagy in SCLC, autophagic inhibition by choroquine does not markedly alter in vivo response to ABT-737 in relevant preclinical models, arguing against this as a treatment strategy for SCLC.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Autofagia , Proteína Beclina-1 , Compostos de Bifenilo/administração & dosagem , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular , Cloroquina/administração & dosagem , Resistencia a Medicamentos Antineoplásicos , Feminino , Técnicas de Silenciamento de Genes , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Nus , Nitrofenóis/administração & dosagem , Piperazinas/administração & dosagem , RNA Interferente Pequeno/genética , Carcinoma de Pequenas Células do Pulmão/metabolismo , Carcinoma de Pequenas Células do Pulmão/patologia , Sulfonamidas/administração & dosagem , Carga Tumoral/efeitos dos fármacos , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...